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Outline

This talk has three parts:

Part 1: Introduction to stochastic interactions

Part 2: Observables on stochastic EM fields

Part 3: Integral equations on stochastic surfaces
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Part I

Introduction to stochastic interactions
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Lossy models need stochastic completion

Here is an interesting conflict:

Theoretical physics is based on “energy conservation”

Engineering models account for energy loss

We conclude that such engineering models are essentially
incomplete.

If we admit energy loss in our models we implicitly admit that
our models account for phenomena which we cannot model
precisely

From general reciprocity principles, we conclude that there
should also be mechanisms which provide energy to our
system.

As we do not model these mechanisms in detail we have to
complete our lossy-model by adding stochastic sources.
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Stochastic model completion

We come to the conclusion that:

Any model which has loss-coefficients should also have
stochastic source-terms.

This is most familiar in electronics, where noise sources are added
to resistors. We have antenna noise but the relation with the
radiation resistance is already less well-known.
In general:

Any practical deterministic model is necessarily
incomplete and, hence, requires “stochastic completion.”

We are looking for methods to make such completions.
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Observable models

A general model gets this form

ψ = H(ψ′)

Here, ψ is a response, ψ′ is a control and H is some mapping
corresponding to the relation between controls and responses.
In the linear (affine) case:

ψ = F + Hψ′

F is a response which is not-controlled by the model controls.
This is an observable model, the coefficients of F and H are
observable as the ψ and ψ′ are.
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Linear observables through distributions

The proto-type observables of electromagnetism can be expressed
as the evaluation of a vector-valued distribution on an
electromagnetic field.

V = 〈j ,E 〉
I = 〈k,H〉

where {E ,H} are vector valued functions on space-time
representing the electromagnetic field and j and k are distributions.
These expressions provide the link between field theory and
observable models.
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The variance of observables

Observables are defined through distributions on EM fields

V = 〈j ,E 〉

If the field is stochastic, the values of observables are stochastic.
We can relate the statistics of an observable to the stochastic field.
Supposing E[E ] = 0,

E[V ] = 〈j ,E[E ]〉 = 0

var[V ] = E[|V |2] = E
[
〈j ,E 〉〈j ,E 〉

]
= 〈j ,CE j〉

where CE is the covariance operator of the stochastic field.
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Stochastic variables

R0

1

A (real) stochastic variable is a probability distribution on the
real numbers.

A single precise value is replaced by (precise!) statistics (like
average, variance, etc.)

In this way, one models the uncertain outcome of
measurements, computations etc.
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Stochastic fields

A stochastic field on a given domain is a function associating
stochastic variables to the points of the domain.

A stochastic electromagnetic field is a stochastic field
“satisfying the Maxwell equations.”

How can a stochastic field satisfy the Maxwell equations ??

By analogy with a stochastic variable, we define a stochastic
EM field through a probability measure on the space of
solutions of (BVPs for) the Maxwell equations.
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Example: A stochastic plane wave

S2
1

ϑ

TϑS
2
1

E (x) = eT exp(−ikϑ · x)

with eT ∈ R and eT · ϑ = 0.
Putting a probability

distribution on the
(complexified) TS2

1 with unit
variance on each tangent space,
we get a covariance function

c(x , y) = (4π)(I + k−2
0 ∇∇

t)

sin(k0‖x − y‖)
k0‖x − y‖

which will be seen to be
proportional to the kernel of the
radiation-loss operator.
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Spectral density

If we define a stochastic process by means of a Fourier integral
representation

A(t) =

∫
ω∈R

exp(−jωt)Â(ω)dω

where E[A(ω)A(ν)] = δ(ω − ν)R(ω), we get a process with the
correct auto-correlation function.
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Interpretation questions

The question whether a specific realisation of a stochastic process
is representative for what can be actually observed has no answer.

What we can check is whether certain interesting statistics
converge to the ones obtained on the actual phenomena.
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Observables defined by a scattering problem I

Most observables can be interpreted as interaction coefficients and
the current distribution defining them can be defined as the
solution of a scattering problem.
Simplest example: Scattering by a perfect conductor: a plane-wave
scattering coefficient is defined by the current distribution, induced
by the incident wave on the obstacle, evaluated on a time-reversed
plane wave for the observation direction and polarisation.
Such current distributions can be constructed by solving the
boundary value problems numerically.
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Observables defined by a scattering problem II

Here again uncertainty pops-up.

The geometrical model we use in the BVP may not
correspond exactly with the actual configuration

The constitutive coefficients we use in the Maxwell equations
may reflect only approximately the materials which are
actually used

If we look for observable variances of the combination of stochastic
distributions evaluated on stochastic fields we are led to

var(V ) = Tr(CJCE )

where Tr(X ) is the trace of operator X . In fact, we show that the
canonical stochastic fields, which we define in Part II, allow for the
evaluation of the covariance of observables defined by the
stochastic surface distributions we define in Part III.
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Towards a general theory

To sum up:

Observables are the quantities of interest in EM modelling,

We have seen what a stochastic electromagnetic field can be

An important rôle is played by the field’s covariance operator
in computing the elementary statistics of observables

We would like to obtain a stochastic field with a “natural”
covariance operator depending on the geometrical and
physical configuration in which it is defined.

We want to model the uncertainty in the definition of the
observable itself
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Part II

Observables on stochastic EM fields
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Integral relations I

A fundamental global relation∫
T

∫
∂Ω

n · (E a × Hb + Eb × Ha) = −
∫
∂T

∫
Ω

(µ0Ha · Hb + ε0E a · Eb)

+

∫
T

∫
Ω

(E a · Jb + Eb · Ja)

�
�
�
���
��
��
��Jb

Ja

t

T

Ω

∂Ω

By taking Ω sufficiently large, the
left hand side vanishes and if T
contains the source durations, the
causal fields only differ from zero on
the upper limit of T = (t0, t1).∫

t1×Ω
(µ0Ha · Hb + ε0E a · Eb) =

∫
T×Ω

(E a · Jb + Eb · Ja) (1)
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Integral relations II (Reciprocity)

Time reversal for the field {Eb,Hb, Jb} = {E c ,Hc , Jc}:∫
T

∫
∂Ω

n · (E a × Hc + E c × Ha) = −
∫
∂T

∫
Ω

(µ0Ha · Hc + ε0E a · E c)

+

∫
T

∫
Ω

(E a · Jc + E c · Ja)

Ja t

T

Ω

∂Ω

Jc

By taking Ω and T sufficiently large,
the left hand side vanishes. The first
term on the right hand side vanishes
too because on the extreme times
either the causal or the anti-causal
field vanishes.∫

T

∫
Ω

(E a · Jc + E c · Ja) = 0 (2)
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Integral relations III

Choosing a different situation for the mixed causal/anti-causal
case:∫
T

∫
∂Ω

n · (E a × Hc + E c × Ha) = −
∫
∂T

∫
Ω

(µ0Ha · Hc + ε0E a · E c)

+

∫
T

∫
Ω

(E a · Jc + E c · Ja)

Jc

t

∂Ω
Ω

T

Ja

t = t1

By taking Ω and T sufficiently large,
the left hand side vanishes. The first
term on the right hand side vanishes
in t = t1.∫

t0×Ω
(µ0Ha · Hc + ε0E a · E c) =

∫
T

∫
Ω

(E a · Jc) (3)
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Energy emission correlation

On a well-chosen space-time domain, we have equations (1)
and (2)∫

T

∫
Ω

(E a · Jb + Eb · Ja) =

∫
t1×Ω

(µ0Ha · Hb + ε0E a · Eb)∫
T

∫
Ω

(E a · Jc + E c · Ja) = 0

Subtraction gives∫
T×Ω

Ja·(Eb−E ac;b) =

∫
T×Ω

Ja·C (Jb) =

∫
{t1}×Ω

(µ0Ha·Hb+ε0E a·Eb)

(4)
Here C : J 7→ EJ − E ac

J is seen to be an operator measuring
emitted energy.
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Canonical stochastic fields

The right hand side of the last equation defines a metric on a
Hilbert space H of vector fields on space (≈ H(curl,Ω)).∫

T

∫
Ω

Ja · C (Jb) = (E a,Eb)H

Now, we consider a “Gel’fand triple”:

S ⊂ H ⊂ S ′

Following a theorem by Minlos, we can define a unique probability
measure on S ′, such that its covariance operator equals the
identity on H. This implies the existence of a stochastic
distribution e0 such that

(∀f , g ∈ S) E[〈e0, f 〉〈e0, g〉] = (f , g)H
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Canonical stochastic fields II

Starting from the last equation, E[〈e0, f 〉〈e0, g〉] = (f , g)H , using
time-reversal on (4),

we obtain

E
[∫

Ω×T
(E0 · Ja)

∫
Ω×T

(E0 · Jb)
]

= 〈Ja,C (Jb)〉Ω×T

and indeed

〈Ja,CE0(Jb)〉Ω×T = 〈Ja,C (Jb)〉Ω×T

where E0 is the distributional electric field corresponding to the
stochastic initial value distribution e0.
Because, Ja and Jb are arbitrary, this shows the equivalence of the
covariance operator of the stochastic field E0, i.e., CE0 , and the
energy emission operator C .
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Properties of the covariance operator I

The analysis, so far, applies to smooth current distributions
evaluated on non-smooth stochastic field distributions.

However, many observables are defined by surface current
distributions computed from boundary value problems.

The evaluation of a distribution from S ′(R3) on a current
distribution with support on a surface Γ ⊂ R3 is not defined.

Perhaps, in spite of the above, we can still evaluate the
covariance operator?
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Properties of the covariance operator II

The essential properties of the space-time covariance operator are
those of the following operator, working on a field φ : R4 → R,

K (φ)(x , t) = Pv

∫
R3

1

4πRx
τ∗(x ,t)φ

where

Rx : R3 3 y 7→ {
3∑

k=1

(xk − yk)2}1/2

τ(x ,t) : R3 3 y 7→ (y , t − Rx(y)/c) ∈ R4

For any given t, this defines a conventional potential operator on
R3 on the projection of φ along the time coordinate.
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Properties of the covariance operator III

The covariance operator of a canonical stochastic electromagnetic
field is continuous

K : Hs(R3)→ Hs+2(R3)

The boundary distributions, j , of electromagnetic fields are

(instantaneously) elements of H−
1
2 (δ, Γ) = γ[H(δ,R3)]. Therefore,

K : H−1(d ,R3) 3 j 7→ K (j) ∈ H1(d ,R3)

The dominant part of the operator C is the differential of K

dK : H−1(d ,R3) 3 j 7→ dK (j) ∈ H(d ,R3) and H−
1
2 (d , Γ) = γ′[H(d ,R3)]

We can conclude that, although canonical stochastic fields are
singular distributions, we can compute the auto-correlation
function of observables defined by surface distributions.
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Relation with the radiation resistance I

To relate auto-covariance and radiation resistances, we start with a
spectral decomposition

V (t) =

∫
ω∈R

Vω(t)

with Vω(t) = V̂ (ω) exp(jωt) and V̂ (−ω) = V̂ (ω)

Vω(t) = 〈j(ω,t),E0〉 = 〈jω,E0〉 exp(jωt)

where

jω(x , t ′) = ĵ(x , ω) exp(−jωt ′)

is the (time-reversed) time-harmonic spectral component of the
current distribution defining the observable.
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Relation with the radiation resistance II

Now, we define the autocorrelation of the observable V

RV (s, t) = E[V (s)V (t)]

= E[

∫
ω∈R

Vω(s)

∫
ν∈R

Vν(t)]

=

∫
ω,ν∈R2

E[Vω(s)Vν(t)]

=

∫
ω,ν∈R2

〈jω(s),Cjν(t)〉

The canonical stochastic fields we are using here are stationary in
the sense that at any given time we have the same spatial
stochastic field and that the auto-covariance operator is invariant
under time translations.
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Relation with the radiation resistance III

This allows us to factor out an offset phase factor

∀t ∈ R C (t, s) = c(s − t) =

∫
ω,ν∈R2

exp(jωt) exp(jνs)f (ω, ν)

∀t ∈ R c(τ) =

∫
ω,ν∈R2

exp(j(ω + ν)t) exp(jντ)f (ω, ν)

Therefore, we can take the limit t →∞ in the RHS

c(τ) =

∫
ω∈R

exp(−jωτ)f (ω,−ω)

Therewith, we get the auto-covariance function of the observable
process

CV (τ) =

∫
ω∈R

(〈jω,E (jω)〉) =

∫
ω∈R

Rj(ω) exp(jωτ)

and Rj(ω) is the radiation resistance of jω.
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Conclusion

The existence of a stochastic electromagnetic field with a
natural covariance operator has been shown (it is a
distributional field with “white-noise” initial values),

This gives a meaning to the computation of ‘a priori’
auto-covariances of stochastic processes induced in systems,

Realisations of such processes can be used to test systems,
not the time-series are to be considered but the statistics we
are focusing on.
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Part III

Stochastic Boundary Integral Equations
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Motivation

We need to compute the scattering diagram of a tank. After
spending some time (and some money), we got a jolly nice
geometric model, Wow!
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Motivation

Comparing the computations with the measurements. . . Oops!
The computation are correct on only a few exceptional points.
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Motivation

With pain in our heart, we de-jollify our model. . .
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Motivation

After some trial and error we get realistic results almost
everywhere. . .
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Motivation

After some trial and error we get realistic results almost
everywhere. . . except where we want it!
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Motivation
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Motivation

As we can see the bumpy model of a tank gives a more realistic
impression of the scattering properties. However, the essential
features are not all there . . .
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Motivation

The message is: we do need precise models. But we need precision
in the probability distribution of a stochastic model and not in a
single deterministic configuration.
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Plane-wave scattering operator

The plane wave scattering operator maps incident plane-waves to
far-scattered-fields

e+(ϑ+) =

∫
ϑ−∈S2

1

S(ϑ+, ϑ−)e−(ϑ−)

The scattering coefficients S(ϑ+, ϑ−) are vector-valued linear
forms on the tangent spaces of the unit sphere. They have the
following integral representation

Spq(ϑ+, ϑ−) = jωµ0

∫
x∈∂Ω

ψ−ϑ+(x)ep(ϑ+) ∧ Heq(ϑ−)(x)

where ep(ϑ) is a basis polarisation of a co-tangent frame in (ϑ),
ψϑ(x) = exp(−jkϑ · x) and Heq(ϑ−) is the surface current density
induced by an incident plane wave defined by (eq, ϑ

−).
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Stochastic geometry

A stochastic linear combination
of vector fields

vα =
∑
p

αpvp

with αp centred random reals.
The flow µα of the vector field
is defined by

∂tµα(x , t) = vα(µα(x , t))
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Stochastic geometry

∂Ωα
∂Ω

µα
x

t = 0

t = 1

µ(x , 1)

A stochastic surface as a
deformation of an average
surface

∀y ∈ ∂Ωα∃!x ∈ ∂Ω0 y = µα(x , 1)
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Stochastic operator equation

We consider the EFIE on deformed boundaries[∫
y∈∂Ωα

G eh
x (y) ∧ H(y)

]
∂Ωα

= −
[
E i
]
∂Ωα

(x)

transferred to the nominal boundary. First, the integral on the LHS∫
y∈∂Ωα

G eh
x (y) ∧ H(y) =

∫
y∈∂Ω

G eh
x (µα(y))∧(µ∗αH)(y)

and, finally, the equation itself

∀x ∈ ∂Ω

∫
y∈∂Ω

(µ∗α × µ∗αG eh)(x , y) ∧ µ∗αH(y) = −(µ∗αE i )(x)

Written formally as Bj = e, with B a stochastic operator and e a
stochastic field on ∂Ω.
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First order asymptotics I

We call jn a consistent n-th order asymptotic solution of the
integral equation if

(B0 + B1α + B2α
2 . . .)(j0 + j1α + j2α

2 . . .)

= e0 + e1α + e2α
2 . . .

is satisfied for the separate degrees in α up to the degree n. This
means that j1 = j0 + j1α is a consistent first-order asymptotic
solution if

B0j0 = e0

B0j1 = e1 − B1j0
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Variances of the scattering coefficients

A plane-wave scattering coefficient as defined before,

Sα =

∫
∂Ωα

E ∧ H =

∫
∂Ω
µ∗αE ∧ µ∗αH

is a stochastic complex variable. Substitution of the solution of the
integral equation of the preceding section gives

=

∫
∂Ω
µ∗αE ∧ (j0 + αj1)

Taylor expansion of the field E on R3 around ∂Ω

E (x + αv(x)) = E (x) + α(LvE )(x) + . . .

where LvE is the Lie derivative along the vector field v . We get

∆Sα = Sα − S0 = α

∫
∂Ω

(LvE (x) ∧ j0 + E ∧ j1)
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Covariance operator of the current distribution

We can use the relation LvE = d(ivE ) + iv (dE ) from exterior
differential analysis, together with the Maxwell equation
dE = −jωB, to obtain

∆Sα = α

∫
∂Ω

(d(ivE ) ∧ j0 + E ∧ j1 − jω(ivB) ∧ j0)

∆Sα = α(〈P,E 〉+ jω〈M,B〉)

where we transposed the differential operator

〈P,E 〉 =

∫
∂Ω

((dj0)ivE − j1 ∧ E ) 〈M,B〉 =

∫
∂Ω

(j0 ∧ ivB)

We get the covariance operator (returning to N parameters)

CJ(F1,F2) =
N∑

k=1

var(αk)‖(〈Pk ,E1〉+ jω〈Mk ,B1〉)‖2
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Analysis of B1

The kernel of B1 is essentially a function of the distance between
two points on ∂Ωα expressed in coordinates on ∂Ω

Rα(x , y) � ‖x − y‖+ α
(x − y) · (v(x)− v(y))

‖x − y‖
+ O(α2)

where θ(x , y) = (x − y)/‖x − y‖. For the free-space Green
function we get up to first order

Gα(x , y) � G0(x , y)− αθ(x , y) · (v(x)− v(y))

(jk + 1/‖x − y‖)G0(x , y) + O(α2)

The kernel distribution of B1 is therefore given by the usual
derivatives of the EFIE operator but with the modified Green
function

G1(x , y) = −G0(x , y)
θ(x , y) · (v(x)− v(y))(1 + jk‖x − y‖)

‖x − y‖

48/51 Michielsen Stochastic EM interactions



A theoretical result

We have the following result: For normal deformations of a flat
surface

θ(x , y) · (v(x)− v(y)) ≡ 0⇒ B1 ≡ 0

and therefore B0(j0 + αj1) = E0 + αE1 we call the result a “rubber
sheet” deformation of a solution of the nominal integral equation

For normal deformations of locally flat surfaces the
“rubber sheet” deformation of the current distribution is
a locally correct first order approximation.

This could imply that the surface current distributions induced on
a stochastic normal deformation of a surface, which is locally flat,
on the scale of the correlation length, can be estimated by solving
only conventional integral equations.
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Conclusion

In this talk, we have presented

A general framework for the probabilistic approach to
variability analysis of electromagnetic observable models based
on canonical stochastic fields and stochastic boundary
distributions

An explicit perturbative construction of the covariance
operator of a current distribution using boundary integral
equations

Ongoing work at Onera is concentrating on non-perturbative
computation of the covariance operator and higher-order statistics
of observables.
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