Polynomial Chaos for Variability Assessment of Electronic and Microwave Designs

Flavio CANAVERO & Paolo MANFREDI

Politecnico di Torino, Italy flavio.canavero@polito.it

Ack

Paolo Manfredi, Flavio G. Canavero

Politecnico di Torino, Italy

Dries Vande Ginste, Daniël De Zutter

²Universiteit Gent, Belgium dries.vande.ginste@intec.ugent.be

Outline

- Motivation and State of the art
- Polynomial Chaos approach
 - Differential Equations
 - Linear Algebraic Equations
 - Nonlinear Equations
- The challenge related to the large number of varying parameters
- Conclusions

General motivation

- The design of electronic devices undergoes three major constraints:
 - Budget
 - Time-to-market
 - Compactness limiting the design tuning

- Simulation tools help engineers to perform right-the-first-time designs:
 - avoidance of re-fabrication
 - minimization of measurements

Interconnect variability

The manufacturing process introduces variability in the geometrical and material properties of interconnects

The Monte Carlo method

Interconnect designers need to perform statistical simulations for variation-aware verifications

- Virtually all available commercial design software relies on the Monte Carlo method
 - Robust and easy to implement ③
 - ✤ Time consuming (slow convergence) ⊗

Outline

- Motivation and State of the art
- Polynomial Chaos approach
 Differential Equations
 Linear Algebraic Equations
 Nonlinear Equations
 - Nonlinear Equations
- The challenge related to the large number of varying parameters
- Conclusions

The Polynomial Chaos (PC) approach

Expand line voltages and currents in terms of polynomial chaos expansions deterministic coefficients

Polynomials are orthonormal w.r.t. probability distribution of parameters

$$\langle \varphi_k, \varphi_j \rangle = \int \varphi_k(\xi) \varphi_j(\xi) w(\xi) d\xi = \begin{cases} = 1 & \text{if } k = j \\ = 0 & \text{otherwise} \end{cases}$$

E.g, Gaussian: $w(\xi) = \frac{1}{\sqrt{2}} e^{-\xi^2/2} \implies \{\varphi_k\}$: Hermite polynomials $\varphi_0 = 1$
 $\varphi_1 = \xi$
 $\varphi_2 = (\xi^2 - 1)/\sqrt{2}$

PC: Statistical information

Statistical information is retrieved from the expansion

Average and standard deviation are readily given:

 $v_0 \varphi_0(\xi) + v_1 \varphi_1(\xi) + v_2 \varphi_2(\xi) + \cdots$

Other moments, distribution functions, quantiles, etc. can be obtained by randomly sampling the expansion

PC: Multiple random variables and multivariate bases

□ Orthogonal multivariate basis built using products of univariate functions

Number of variables

$$W_{k}(<_{1},<_{2},...,<_{n}) = \prod_{i=1}^{n} W_{k_{i}}(<_{i}), \qquad \sum_{i=1}^{n} k_{i} \leq p$$
Inner product
readily extends
order of
expansion
1 For example bivariate
Hermite basis:
1 Number of terms:

$$\frac{(p+n)!}{p!n!}$$

$$\frac{(p+n)!}{p!n!}$$

$$\frac{(p+n)!}{2}$$

$$\frac{(p+n)!}{4}$$

$$\frac{(p+n)!}{2}$$

$$\frac$$

PC for systems governed by Differential Equations

Step 1: represent the random per-unit-length parameters inside the governing equations in terms polynomial chaos expansions

PC for Differential Equations: Galerkin weighting

□ **<u>Step 2</u>**: project equations onto each basis function

$$\begin{array}{l} \left\langle \cdot, \mathbf{W}_{0} \right\rangle \frac{d}{dz} \mathbf{V}_{0} \left\langle \left\{ \mathbf{z} = \varphi_{1}^{*} \right\} + \frac{d}{dz} \mathbf{V}_{1} \left\langle \left\{ \mathbf{x}_{0}^{*} \right\} + \ldots = -(\mathbf{Z}_{0} \mathbf{I}_{0} \left\langle \mathbf{z} = \varphi_{0}^{*} \mathbf{I}_{0}^{*} \right\rangle \right. \\ \left. + \mathbf{Z}_{0} \mathbf{I}_{1} \left\langle \left\{ \mathbf{z} \right\} \right\rangle + \mathbf{Z}_{1} \mathbf{I}_{0} \left\langle \left\{ \mathbf{z} \right\} \right\rangle + \mathbf{Z}_{1} \mathbf{I}_{0} \left\langle \left\{ \mathbf{z} \right\} \right\rangle + \mathbf{Z}_{1} \mathbf{I}_{1} \left\langle \mathbf{z} = \varphi_{1}^{*} \mathbf{I}_{0}^{*} \right\rangle + \ldots \\ = \mathbf{0} \qquad = \mathbf{0} \qquad = \mathbf{0} \\ \left. \mathbf{U}_{0} \left\{ \mathbf{z} \right\} + \mathbf{U}_{0} \mathbf{I}_{0} \left\{ \mathbf{z} \right\} + \mathbf{U}_{0} \left\{ \mathbf{z} \right\} + \mathbf{$$

PC for Differential Equations: deterministic eq's

□ Repeating the procedure for all the basis functions...

Applying also to the second transmission-line equation

Deterministic
system!!
$$\begin{cases} \frac{d}{dz} \, \widetilde{\mathbf{V}} = -\widetilde{\mathbf{Z}} \cdot \widetilde{\mathbf{I}} \\ \frac{d}{dz} \, \widetilde{\mathbf{I}} = -\widetilde{\mathbf{Y}} \cdot \widetilde{\mathbf{V}} \end{cases} \xrightarrow{\mathbf{V}_0} \widetilde{\mathbf{V}}_1 \quad \overrightarrow{\mathbf{V}_0} \quad \overrightarrow{\mathbf{Z}}_1 \quad \overrightarrow{\mathbf{Z}}_2 \quad \overrightarrow{\mathbf{Z}}_1 \quad (\mathbf{Z}_0 + 2\mathbf{Z}_2) \quad 2\mathbf{Z}_1 \\ \mathbf{Z}_2 \quad \mathbf{Z}_1 \quad (\mathbf{Z}_0 + 4\mathbf{Z}_2) \end{bmatrix}$$
 non-symmetric!

PC for Differential Equations: orthonormalization

- In practice, commercial solvers only support reciprocal lines, i.e. with symmetric augmented matrices
- Re-normalize the basis functions so that

$$\langle \mathsf{W}_k, \mathsf{W}_k \rangle \equiv 1$$

PC for Differential Equations: orthonormalization

- □ In practice, commercial solvers only support reciprocal lines, i.e. with symmetric augmented matrices
- **Re-normalize** the basis functions so that $\langle W_k, W_k \rangle \equiv 1$

□ E.g., orthonormal Hermite polynomials for Gaussian variability:

A small step for polynomial chaos, a giant leap for SPICE implementation

PC for systems governed by Linear Algebraic Equations

Polynomial chaos approach can be applied also to lumped elements. For example, RC circuit with random capacitance in Laplace domain:

$$I_{C}(s, \boldsymbol{<}) = sC(\boldsymbol{<})V_{AB}(s, \boldsymbol{<})$$

 $I_{C0}(s)W_0(<) + I_{C1}(s)W_1(<) =$

□ <u>Step 1</u>: expand governing equations in terms of orthogonal polynomials $W_k(<)$ (optimal choice depends on distribution). E.g., 1st order expansion:

known coefficients (related to the statistics of *C*) unknown coefficients (to be determined)

$$= s[C_0 W_0(<) + C_1 W_1(<)][V_{AB0}(s) W_0(<) + V_{AB1}(s) W_1(<)]$$

PC for Linear Equations: Galerkin weighting

Step 2: Galerkin projection on w_0 and w_1 leads to two new equations:

$$< W_{j}, W_{k} >= \begin{cases} r_{k} & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases} \implies \begin{cases} I_{C0}(s) = sC_{0}V_{AB0}(s) + sC_{1}V_{AB1}(s) \\ I_{C1}(s) = sC_{1}V_{AB0}(s) + sC_{0}V_{AB1}(s) \end{cases}$$

In matrix form:

Dependence on < removed due to integration procedure

new equations are deterministic!!

PC for Linear Equations: augmented eq's

Repeating the procedure also for non-stochastic elements leads to a set of deterministic multiport equations:

PC for systems governed by NonLinear Equations

$$i(t) = F(v(t))$$

□ <u>Step 1</u>: Expansion

POLITECNICO DI TORINO

$$i_0\varphi_0 + i_1\varphi_1 + \dots = F(v_0\varphi_0 + v_1\varphi_1 + \dots)$$

 $\Box \underline{Step 2} \subseteq Galerkin projection = \frac{\langle \cdot, \varphi_m \rangle}{\langle \cdot, \varphi_m \rangle}$

$$i_m(t) = \left| FF(v_0\varphi_0(\xi) + v_1\varphi_1(\xi) + \cdots) \varphi_m(\xi)w(\xi)d\xi \right|$$

No closed form!!

PC for NonLinear Equations: Quadrature

□ Idea : discretize the above integral using a quadrature rule [*]

$$i_{m}(t) = \int FF(v_{0}\varphi_{0}(\xi) + v_{1}\varphi_{1}(\xi) + \cdots) \varphi_{m}(\xi)w(\xi)d\xi \approx \sum_{q=1}^{Q} F(v_{0}a_{0q} + v_{1}a_{1q} + \cdots)a_{mq}w_{q}$$
quadrature
quadrature
weights
Deterministic close-form equation

The approach is approximate but high accuracy with low number of points can be achieved by using Gaussian quadratures, e.g.

Variability	Basis functions	Quadrature rule
Gaussian	Hermite polynomials	Gauss-Hermite
uniform	Legendre polynomials	Gauss-Legendre

[*] A. Biondi, D. Vande Ginste, D. De Zutter, P. Manfredi, and F.G. Canavero, *IEEE Trans. CPMT*, Jul. 2013

ore-proc

olution

oost-proc

PC Summary

- **Project** the system matrices onto a basis of orthogonal polynomials
- Use the expansion coefficients to build the "augmented" MTL system
- Solve (once \rightarrow faster) the obtained deterministic system, thus finding the expansion coefficients \mathbf{V}_k and \mathbf{I}_k

Use the polynomial chaos expansion to extract statistical information.
E.g., for one Gaussian random variable:

$$\mathbf{V}(\check{\mathbf{S}},\boldsymbol{\langle}) \approx \sum_{k=0}^{p} \mathbf{V}_{k}(\check{\mathbf{S}}) \mathbf{W}_{k}(\boldsymbol{\langle}) = \mathbf{V}_{0}(\check{\mathbf{S}}) \cdot \mathbf{1} + \mathbf{V}_{1}(\check{\mathbf{S}}) \cdot \boldsymbol{\langle} + \mathbf{V}_{2}(\check{\mathbf{S}}) \cdot (\boldsymbol{\langle}^{2} - 1) + \dots$$

Hermite polynomials

deterministic solution

This process can be easily automated!!

Example: lines+drivers+diode

Example: results (i)

Example: results (ii)

eme group

Outline

- Motivation and State of the art
- Polynomial Chaos approach
 - Differential Equations
 - Linear Algebraic Equations
 - > Nonlinear Equations

The challenge related to the large number of varying parameters

Conclusions

PC limitation: size of the augmented system

The augmented deterministic equations are coupled and their size K increases in particular with the number of random parameters

Is it possible to **decouple** such equations?

Alternative solution: a) "point matching"

□ Step a1: Take the equations with expanded voltages and currents. E.g., the voltage equation (with K = 2 for simplicity)

$$\frac{d}{dz}V_0\varphi_0(\xi) + \frac{d}{dz}V_1\varphi_1(\xi) = -Z(\xi)(I_0\varphi_0(\xi) + I_1\varphi_1(\xi))$$

□ Step a2: Suppose a set of *K* match points (here ξ_0 and ξ_1) be available for the random parameters and force the equations to be satisfied at these match points

$$\frac{d}{dz}V_0a_{00} + \frac{d}{dz}V_1a_{01} = -Z_0(I_0a_{00} + I_1a_{01})$$

$$\frac{d}{dz}V_0a_{10} + \frac{d}{dz}V_1a_{11} = -Z_1(I_0a_{10} + I_1a_{11})$$

$$a_{mk} = \varphi_k(\xi_m): \text{ polynomial } k \text{ evaluated at match point } m$$

$$Z_m = Z(\xi_m): \text{ per-unit-length impedance at match point } m$$

deterministic equations!

Alternative solution: b) "decoupling"

Define the following transformation for the voltages and currents

$$\begin{cases} U_0 = V_0 a_{00} + V_1 a_{01} \\ U_1 = V_0 a_{10} + V_1 a_{11} \end{cases} \implies \begin{bmatrix} U_0 \\ U_1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} V_0 \\ V_1 \end{bmatrix} \\ \mathbf{A} = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \\ \begin{cases} J_0 = I_0 a_{00} + I_1 a_{01} \\ J_1 = I_0 a_{10} + I_1 a_{11} \end{bmatrix} \implies \begin{bmatrix} J_0 \\ J_1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} I_0 \\ I_1 \end{bmatrix}$$

The matched equations are uncoupled with respect to the new variables...

$$\begin{cases} \frac{d}{dz}U_0 = -Z_0J_0\\ \frac{d}{dz}J_0 = -Y_0V_0 \end{cases} \qquad \qquad \begin{cases} \frac{d}{dz}U_1 = -Z_1J_1\\ \frac{d}{dz}J_1 = -Y_1V_1 \end{cases}$$

... and can therefore be solved independently!!!

An iterative and non-intrusive procedure

Once the uncoupled responses have been obtained, the classical voltage and current coefficients are retrieved via inverse transformation

$$\begin{bmatrix} V_0 \\ V_1 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} U_0 \\ U_1 \end{bmatrix} \qquad \begin{bmatrix} I_0 \\ I_1 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} J_0 \\ J_1 \end{bmatrix}$$

- The approach applies to circuits (also nonlinear) with an arbitrary number of expansion terms and to any distribution type
- ☐ The procedure is fully iterative and non-intrusive:
 - analyze the stochastic interconnect problem for each match point, thus obtaining the uncoupled coefficients
 - retrieve the classical polynomial chaos coefficients by applying the inverse transformation

Any standard circuit simulator can be called by this procedure

Generation of the match points

- The match (or sampling) points for the random parameters are selected according to the stochastic testing algorithm [2]
- These are a subset of the nodes of a tensor product Gaussian quadrature rule (Gauss-Hermite, Gauss-Legendre, depending on the distribution of the parameters...)
- \Box The first match point is usually $\xi = 0$ (nominal value for each parameter)
- Another quadrature node is included as an additional match point if the corresponding new row of matrix A "has a large enough component orthogonal" to the span of the previous rows, until K points are selected
- □ Better algorithms might be possibly devised (open issue)...
- [2] Z. Zhang, T.A. El-Moselhy, I.M. Elfadel, and L. Daniel, "Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos," *IEEE Trans. Circuits and Syst.*, Oct. 2013

Decouplig: Tutorial example

- □ K = 3 sampling points are generated with the stochastic testing algorithm and correspond to **nominal value** and ±34.69 variations
- □ The corresponding transformation matrix is

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1/\sqrt{2} \\ 1 & -\sqrt{3} & \sqrt{2} \\ 1 & +\sqrt{3} & \sqrt{2} \end{bmatrix}$$

Stochastic testing simulation

Application example (i)

2-GHz BJT low-noise amplifier (LNA)

d = 25 Gaussian RVs

- all capacitances with 10% rel. st.dev
- all resistances with 10% rel. st.dev
- parasitics and forward current gain of the BJT with 10% rel. st.dev
- widths of the transmission lines with 5% rel. st.dev

Application example (ii)

St.dev of steady-state instantaneous output power of LNA (10 dBm input pwr) - harmonic balance simulation in HSPICE

10⁵ MC and 171 PC simulations (to have same accuracy)

10⁵ MC and 351 PC simulations (to have same accuracy)

Conclusion (i)

- Numerical simulation is fundamental in the early design phase of electronic products to assess system performance
- Besides efficient and accurate simulation tools, there is an increasing demand for the inclusion of variability in the analysis
- □ PC methodology handles:
 - Interconnects for high-speed signal transmission
 - Arbitrary microwave passive elements
 - Mixed-signal circuits (thanks to SPICE implementation)

Conclusion (ii)

PC shows limitations for highdimensionality problems

- Limitations can be overcome thanks to a simple yet effective decoupling technique:
 - The procedure renders the polynomial chaos technique fully decoupled and non-intrusive
 - Compared to collocation techniques, it requires fewer sampling points and applies to any system and distribution type

