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General motivation

4

 The design of electronic devices undergoes three major
constraints:

 Budget
 Time-to-market
 Compactness limiting the design tuning

 Simulation tools help engineers to perform
right-the-first-time designs:

 avoidance of re-fabrication
 minimization of measurements

Time and money
saving
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Interconnect variability

5

 The manufacturing process introduces variability in the geometrical and
material properties of interconnects

 Deterministic excitations produce stochastic responses

Impurities: permittivity,
loss tangent, etc.

Etching: edge
profile

Photolitograpy: trace separation

random
parameters
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The Monte Carlo method

6

 Interconnect designers need to perform statistical simulations for
variation-aware verifications

 Virtually all available commercial design software relies on the Monte
Carlo method

 Robust  and easy to implement 

 Time consuming (slow convergence)
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The Polynomial Chaos (PC) approach

8

 Expand line voltages and currents in terms of polynomial chaos
expansions

 Polynomials are orthonormal w.r.t. probability distribution of parameters

≈ + ( ) + ( ) + ⋯
orthonormal polynomials

deterministic coefficients
(to be determined)

, = ∫ = = 1 if == 0 otherwise= 1 /E.g, Gaussian: { }: Hermite polynomials

random parameters

= 1== ( − 1)/ 2
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PC: Statistical information

9

 Statistical information is retrieved from the expansion

 Average and standard deviation are readily given:

 Other moments, distribution functions, quantiles, etc. can be obtained by
randomly sampling the expansion

Avg =
Std = + +⋯

( ) + ( ) + ( ) + ⋯
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PC: Multiple random variables and multivariate bases

 Orthogonal multivariate basis built using products of univariate functions

index k order p Basis function
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PC for systems governed by Differential Equations

 Step 1: represent the random per-unit-length parameters inside the
governing equations in terms polynomial chaos expansions
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 Step 2: project equations onto each basis function

PC for Differential Equations: Galerkin weighting
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 Repeating the procedure for all the basis functions…

PC for Differential Equations: deterministic eq’s
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system!!

P+1 eqs. for
P+1 unknowns

 Applying also to the second transmission-line equation
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 In practice, commercial solvers only support reciprocal lines, i.e. with
symmetric augmented matrices

 Re-normalize the basis functions so that

PC for Differential Equations: orthonormalization

1, kk 

14
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 E.g., orthonormal Hermite polynomials for Gaussian variability:

A small step for polynomial chaos, a giant leap for SPICE implementation

PC for Differential Equations: orthonormalization
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 In practice, commercial solvers only support reciprocal lines, i.e. with
symmetric augmented matrices

 Re-normalize the basis functions so that 1, kk 
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PC for systems governed by Linear Algebraic Equations

 Step 1: expand governing equations in terms of orthogonal polynomials
k() (optimal choice depends on distribution). E.g., 1st order expansion:
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known coefficients (related to the statistics of C)
unknown coefficients (to be determined)

 Polynomial chaos approach can be applied also
to lumped elements. For example, RC circuit
with random capacitance in Laplace domain:

16
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PC for Linear Equations: Galerkin weighting

 Step 2: Galerkin projection on 0 and 1 leads to two new equations:

 In matrix form:
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removed due to

integration procedure

new equations are
deterministic!!
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PC for Linear Equations: augmented eq’s

 Repeating the procedure also for non-stochastic elements leads to a set
of deterministic multiport equations:

)()()()(),( 1100  sVsVsV BBB 

 Solution of the augmented circuit gives polynomial chaos coefficients
for the unknown variables. E.g.,

01

10
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CC
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PC for systems governed by NonLinear Equations

 Step 1: Expansion

 Step 2: Galerkin projection

+ +⋯ = + +⋯
< ⋅, >

= + +⋯
No closed form!!

,,

= ( )( )
( )

19
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PC for NonLinear Equations: Quadrature
 Idea ☼: discretize the above integral using a quadrature rule [*]

 The approach is approximate but high accuracy with low number of
points can be achieved by using Gaussian quadratures, e.g.

= + +⋯ ≈ + +⋯
≜ ( )

quadrature
weights

quadrature
points

[*] A. Biondi, D. Vande Ginste, D. De Zutter, P. Manfredi, and F.G. Canavero, IEEE Trans. CPMT, Jul. 2013

Deterministic close-form equation

20

Variability Basis functions Quadrature rule

Gaussian Hermite polynomials Gauss-Hermite

uniform Legendre polynomials Gauss-Legendre
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PC Summary

 Project the system matrices onto a basis of orthogonal polynomials

 Use the expansion coefficients to build the “augmented” MTL system

 Solve (once faster) the obtained deterministic system, thus finding
the expansion coefficients Vk and Ik

 Use the polynomial chaos expansion to extract statistical information.
E.g., for one Gaussian random variable:

This process can be easily automated!!
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Example: lines+drivers+diode

= 4tan = 0.02
35 µm

80 µm

100 µm 500 µm

22

RV,  = 10%
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Example: results (ii)
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PC limitation: size of the augmented system

26

 The augmented deterministic equations are coupled and their size
increases in particular with the number of random parameters

= + !! !
# of random
parameters

expansion order
(typ. = 2)

Efficiency
reduced for

many random
parameters

1 10 20
3

66

231

Is it possible to decouple such equations?
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Alternative solution: a) “point matching”

27

 Step a1: Take the equations with expanded voltages and currents. E.g.,
the voltage equation (with = 2 for simplicity)

 Step a2: Suppose a set of K match points (here and ) be available
for the random parameters and force the equations to be satisfied at
these match points

( ) + ( ) = − ( )( ( ) + ( ))

+ = − ( + )+ = − ( + )
= ( ): polynomial

evaluated at match point= ( ): per-unit-length
impedance at match point

deterministic equations!
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Alternative solution: b) “decoupling”

28

 Define the following transformation for the voltages and currents

 The matched equations are uncoupled with respect to the new
variables…

… and can therefore be solved independently!!!

= += + ⟹ == += + ⟹ =

= −= − = −= −

=
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An iterative and non-intrusive procedure

29

 Once the uncoupled responses have been obtained, the classical
voltage and current coefficients are retrieved via inverse transformation

 The approach applies to circuits (also nonlinear) with an arbitrary
number of expansion terms and to any distribution type

 The procedure is fully iterative and non-intrusive:

 Any standard circuit simulator can be called by this procedure

= =

• analyze the stochastic interconnect problem for each
match point, thus obtaining the uncoupled coefficients

• retrieve the classical polynomial chaos coefficients
by applying the inverse transformation
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Generation of the match points

30

 The match (or sampling) points for the random parameters are selected
according to the stochastic testing algorithm [2]

 These are a subset of the nodes of a tensor product Gaussian
quadrature rule (Gauss-Hermite, Gauss-Legendre, depending on the
distribution of the parameters…)

 The first match point is usually = 0 (nominal value for each parameter)

 Another quadrature node is included as an additional match point if the
corresponding new row of matrix A “has a large enough component
orthogonal” to the span of the previous rows, until points are selected

 Better algorithms might be possibly devised (open issue)…
[2] Z. Zhang, T.A. El-Moselhy, I.M. Elfadel, and L. Daniel, “Stochastic testing method for transistor-level

uncertainty quantification based on generalized polynomial chaos,” IEEE Trans. Circuits and Syst., Oct. 2013
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Decouplig: Tutorial example

31

 Microstrip line with random trace width

 = 3 sampling points are generated with the stochastic testing algorithm
and correspond to nominal value and ± . variations

 The corresponding transformation matrix is

= 4.1tan = 0.02
35 µm 500 µm

50 Ω
1 pF

10 cm 150 µm

20%

= 1 0 −1/ 21 − 3 21 + 3 2

+ + (expansion with = 3)
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≡ Avg
Stochastic testing simulation

32

98
µm

150
µm

202
µm

Time, ns

, V

, ,

+ ≡ Std

× O Avg Monte Carlo

O Std Monte Carlo

simulation at the
match points

Monte Carlo analysis: …………….. 2 hours
Stochastic testing simulation: …. ……3.6 s
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Application example  (i)
2-GHz BJT low-noise amplifier (LNA)

d = 25 Gaussian RVs

 all capacitances
with 10% rel. st.dev

 all resistances with
10% rel. st.dev

 parasitics and
forward current gain
of the BJT with 10%
rel. st.dev

 widths of the
transmission lines
with 5% rel. st.dev

33
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Application example  (ii)

St.dev of steady-state instantaneous output power of
LNA (10 dBm input pwr) - harmonic balance simulation in
HSPICE.

105 MC and 171 PC simulations (to have same accuracy)

34
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Application example  (ii)

|S11| vs frequency

105 MC and 351 PC simulations (to have same accuracy)

35
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Conclusion (i)
 Numerical simulation is fundamental in the early design phase of

electronic products to assess system performance

 Besides efficient and accurate
simulation tools, there is an
increasing demand for the
inclusion of variability in the
analysis

 PC methodology handles:

 Interconnects for high-speed signal
transmission

 Arbitrary microwave passive elements
 Mixed-signal circuits (thanks to SPICE

implementation)
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 PC shows limitations for high-
dimensionality problems

 Limitations can be overcome thanks to
a simple yet effective decoupling
technique:

 The procedure renders the polynomial
chaos technique fully decoupled and
non-intrusive

 Compared to collocation techniques, it
requires fewer sampling points and
applies to any system and
distribution type

Conclusion (ii)

37
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