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Reliability assessment – Rare events 

We consider: 

● a random vector ( with discrete or/and continuous components ) 
 a random “object”     with realizations in a set X 

● a random process ( Gaussian, Markov, … ) 

 a scalar real-valued function   , whose entry    is a realization of  g Xx

We wish to evaluate the probability of the rare event corresponding to 
the following domain of      ( ≡ failure criterion ): 

{ }: ( ) 0g= ∈ ≤x x x 



This probability reads: [ ]( ) 0 1g ≤X 

Note: This function may represent a time and/or space variant 
problem, e.g. expressed in the form: 

[ ]0,
( ) max ( , )

t T
g g t

∈
=x x
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Some fields of application 

 Risk management of infrastructures in response to extreme events: 
earthquakes, floods, typhoons, hurricanes 

 Prevention of power system blackouts 

 Radioactive waste storage: How likely is radioactive waste to escape 
from a repository over the next 10,000 years, depending on unknown 
aspects of rocks and atmospheric conditions? 

 Packet-switched telecommunications networks: Use of buffer of 
limited size in carrying real-time video. Quantification of the small 
probabilities of packets loss if the buffers overflow ( queuing systems ). 

 Protection of digital contents ( watermarking ): Techniques for 
embedding/hiding information in a digital file ( typically audio or video ), 
such that the change is not perceptible and very hard to remove.  

 Large losses in mathematical finance: Managers of portfolios of 
loans need to maintain reserves to protect against rare events 
involving large losses due to multiple loan defaults. 
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Time-invariant reliability ( a.k.a. static simulation problem ) 

1x

2x

( ) 0g <x

( ) 0g >x

( ) 0g =x

1Xµ

2Xµ
( )fX x

O

X     : continuous random vector with support              and joint pdf n⊆  fX

     : limit-state function ( LSF )  g

  : failure domain 

( )f ( ) 0 ( ) d

( ) ( ) d

p g f

f

= ≤ =

=

∫

∫
x

x

X

X

X x x

x x x







1

{ }: ( ) 0g= ∈ ≤x x x 

  : safe domain { }: ( ) 0g= ∈ >x x x 

  : limit-state surface ( LSS ) { }0 : ( ) 0g= ∈ =x x x 

     : failure probability fp

where: 
1 if

( )
0 if

∈
=  ∉x

x

x

x
x

x




1
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● linear correlation: 

Joint probability density function  ( )fX x

1x

2x

( ) 0g <x

( ) 0g >x

( ) 0g =x

1Xµ

2Xµ
( )fX x

O

The joint probability density function      is rarely accessible. fX

Statistical information: 
 marginal pdfs      ( or cdfs      ) of      components, for 

iXf 1, ,i n= iX
 correlation structure between      components iX

ij n n
ρ

×
 =  R

● or (much better) a copula     such that: C

( )
1 1( ) ( ), , ( )

nX X nCF F x F x=X x 

Copula in short ≡ What remains of a 
joint cdf once the effect of the marginal 
distributions has been removed.  
For continuous marginal distributions, 
    is unique. C

iXF
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Mapping to a standard normal space 

( ) 0G =u

1u

2u

1x

2x

( ) 0g =x

1Xµ

2Xµ
( )fX x

O

{ }: ( ) 0g= ∈ ≤x x x  { }1: ( )( ) ( ) 0n g T G−= ∈ = ≤u u u u

( )f ( ) 0

( ) d

p g

f

= ≤

= ∫
x

X

X

x x





( )( ) 0G= ≤U

( ) dnϕ= ∫
u

u u


Isoprobabilistic 
transformation T 

where: 2
2 2

1 1( ) exp
(2 ) 2n nϕ

π
 = − 
 

u u

Some usual transformations:  
● Nataf (1962,1986) 
● Rosenblatt (1952,1981) 

( )nϕ u
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Approximation methods 
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First-Order Reliability Method ( FORM ) 

1u

2u

β

α *
1u

*
2u

O

*P

( ) 0G =u

 Problem statement 
*P

              : Hasofer-Lind reliability index T *β = α u

* *( ) / ( )G G= −∇ ∇ uα u                                   : unit vector 

Find the most probable failure point ( MPFP )     solution of:  

* T1arg min subject to ( ) 0
2n

G
∈

= − =
u

u u u u


 FORM approximation 

First-order polynomial of     at     : G *P
* * T *

1( ) ( ) ( ) ( )G G G= + ∇ −u u u u u

( )

1

f FORM 1( ) 0

( ) ( ) d

( )
n

n

p G

ϕ

β

= ≤

=

= Φ −

∫ u

U

u u u




1

( )nϕ u

1( ) 0G =u

where     is the gradient operator. ∇

1u
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FORM: strengths and limitations 

 Strengths 

 Works in several engineering problems of practical interest 
 Computational cost        and rather independent of the failure 

probability to calculate 

 FORM approximation can be improved by other techniques 
when the LSS is curved at MPFP ( SORM, IS ) 

 Limitations 

 Convergence of the optimization problem tedious or impossible. 
Main causes: numerical estimation of the gradient of the LSF, 
intricate shape of the LSS 

 Uncontrolled bias on the failure probability due to nonlinearities of 
the LSS ( can be corrected with SORM ) or multiple MPFPs 
( hard to tackle with FORM )  

n∝
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Second-Order Reliability Method ( SORM ) 

 SORM approximation 

( ) 0G =u

2 ( ) 0G =u

1( ) 0G =u

1u

2u

β

α *
1u

*
2u

O

*P

( )nϕ u

Second-order polynomial of     at     ( obtained by FORM ): G *P
* * T * * T 2 * *

2
1( ) ( ) ( ) ( ) ( ) ( )( )
2

G G G G= + ∇ − + − ∇ −u u u u u u u u u u

where     is the Hessian operator 2∇

No closed form solution. 

( )

2

f SORM 2 ( ) 0

( ) ( ) d
n

n

p G

ϕ

= ≤

= ∫ u

U

u u u




1

Hohenbichler & Rackwitz approximation: 
1

f SORM
1

1( )
1 ( )

n

i i

p β
ψ β κ

−

=

≈ Φ −
+∏

where     are principal curvatures at                          
( )( )
( )

ϕ βψ β
β

=
Φ −

and 
iκ *P

2u
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SORM: strengths and limitations 

 Strengths 

 Correction of FORM approximation in case of a single MPFP 
and a curved LSS 

 Limitations 

 Numerical estimation of the Hessian of the LSF by finite differences 
is often difficult 

 Computational cost         for curvature-fitting SORM. 
An alternative technique known as point-fitting SORM more suitable 
for high dimensional problems ( large   ) and slightly noisy LSS 

2n∝

n
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Sampling methods 
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Crude Monte Carlo method 

 Problem statement 

Mean ≡ Mathematical expectation 

( )f (( ) 0 ( ) d ) ( )( ) d fp g f f  = ≤ = = =  ∫ ∫ X

x

x xX Xx XX x x x x 
 

1 1

 Crude Monte Carlo estimator 

f ( )fp  =  X x
X 1



( )
f MC

1

1 ( )
N

j

j
p

N =

= ∑ x
X1 Mean ≡ Sample mean 

where      ,                 , are a set of     independent and identically 
distributed samples simulated according to joint pdf  

( )jX 1, ,j N=  N
fX

 Properties of the crude Monte Carlo estimator 


ff MCp p  =  Unbiased estimator: 

 Coefficient of variation: 


f MC

f

f

1
p Np

pδ −
=





f MC

f MC

f MC

Var
p

p

p
δ

 
 =

 
 
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Crude MC: strengths and limitations 

 Strengths 

 No assumption about the LSF 

 Limitations 
 Inefficiency for small failure probabilities 

 Computational cost independent of the dimensionality n
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Subset simulation (1/3) 

 Conceptual idea 
Replace the estimation of the probability of 
a rare event by a sequential estimation of 
conditional probabilities corresponding to 
less rare intermediate failure events 

( )
( ) ( )

( ) ( ) ( ) ( )

f

1 1

f 1 1 2 2 1 1

|

| | |

m m m

m m m m

p E
E E E

p E E E E E E E

− −

− − −

=

=

=

=






 

   

{ }( ) 0 mE G E= ≤ =Uwhere                                is the failure event, 

and                        are events such that: , 1, , ,sE s m=  1 2 1m mE E E E E−= ⊂ ⊂ ⊂ ⊂

Practically, we take                             for 
where 

( ){ }s sE G y= ≤U 1, , ,s m= 

1 2 0my y y> > > =

1uO

2u

( ) 0G =u

u
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( )j
nϕU 

Subset simulation (2/3) 

 First intermediate level  

 Intermediate levels     for  

1u

2u

O

1

( ) 1G y=u

1uO

2

( ) 2G y=u

2u

1y

sy 1s >

For                , 1, ,j N= 

1st level    :     -quantile of 0p ( )( )
1

( )j
j N

G
≤ ≤

u

( )
11 1 ( )

n
p E ϕ  = =  U  1



1

( )
01

1

1 ( )
N

j

j
p p

N =

= =∑ u1

( )
1( | )s

j
n Eϕ −⋅U For                , 1, ,j N= 

  th level    :     -quantile of 0p ( )( )
1

( )j
j N

G
≤ ≤

u

( )
11 ( )|| ( )

n sss s Esp E E ϕ −− ⋅  = =  U  1



( )
0

1

1 ( )
s

N
j

s
j

p p
N =

= =∑ u1

1y

s sy
If          , then           and set  0sy < 0sy =m s=

if 0sy >

0p> if 0sy =
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Subset simulation (3/3) 

 Important remarks about subset simulation 
 Conditional MCMC samples generated with the Metropolis-

Hastings algorithm modified by Au & Beck (Au & Beck, 2001) 
Main consequence: Generated samples are not independent 
due to the choice of a proposal pdf 

 Initial states of MCMC follow the target distribution 
 No burn in period in the chains 

1|( )sn Eϕ −⋅

 Optimal tuning of subset simulation: 
 

[ ]0 0.1,0.3p ∈


1
0f SS
m

mp p p−=

 Subset simulation estimator asymptotically unbiased 
 Practically no significant bias for   1000N ≥

 The coefficient of variation        of         can be estimated  


f SSp
δ 

f SSp
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Subset simulation: strengths and limitations 

 Strengths 

 High efficiency for small failure probabilities 

 Limitations 
 Still requires several thousands calls to the LSF for a coefficient of 

variation in the order of a few ten percents 

 Computational cost independent of the dimensionality n
 Works well in almost all engineering problems of practical interest  
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Sensitivity measures in reliability assessment 
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Sensitivity measures with FORM 

 Importance factors at MPFP 

 Sensitivities to distribution parameters 

1 2, , , ,p pµ σ fθf ( ) ( , ) dfp f= ∫ x X θx x x1


: distribution parameters (                       ) 

T *
, ( , )

f f fTβ∇ =θ θα J x θ

( )f FORMf f
p ϕ β β∇ = − ∇θ θ

 Case of independent inputs 

 Case of linearly correlated inputs 

( ) * 2 2 2
1 1Var / ( ) 1i nG G α α α ∇ = + + + + = U u  

Contribution from the   th random input i

Importance factors     (Der Kiureghian 2009)  iγ

Example: sensitivities to means 
f FORM 0

iX

p
µ

∂
>

∂
Sollicitation-type input 

0< Resistance-type input 
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Sensitivities to distribution parameters 
of MC and SS based on the score function: 

Sensitivity measures with MC and subset simulation 

 Monte Carlo 

 Subset simulation 

ln ( , )
f ff∇ Xθ θx

f
ln ( , )

( ) ( ) d

ln ( , )
( )f

f k

f k f k

f k

f k

fp f

f

θ
θ θ

θ
θ

∂∂
=

∂ ∂

 ∂
=  ∂ 

∫ x

X x

X
X

X

x
x x x

X
X

1

1






if     does not depend on  f kθ



( )
( )f

1

ln ( , )1 ( ) f k

f

jN
j

jk f k

fp
N

θ
θ θ=

∂∂
=

∂ ∂∑ x

X X
X1

A straightforward 
postprocessing 
of a MC analysis 

A similar estimator is available for subset simulation, derived from 
probabilities     ,                 (Song et al. 2009), see e.g. (Dubourg 2011) 1, ,s m= 



sp
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Application example 
Overcurrent in a transmission line 
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Model description 

 Limit-state function 

th( ) ( )g y r= −x x
( )r xwhere        is given in closed form (Rannou et al. 2002) 

and 4
th 1.5 10 Ay −= ×



24 

Results (1/4) 
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Results (2/4) 

9 pφ↔
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Results (3/4) 

 Alternative method 

( )
9

9

f 9 9 9 9| ( ) dXp E X x f x x= =∫ 


Solve 

where 
and 

{ }9 9 1 8 10 119| ( , , , , , ) 0E X x g X X X Xx= = ≤

9 (0,2 )pX πφ=  

( )f 9 9,
1

|1 M

j
j

p E X x
M =

≈ =∑

where                is a set of     equally-spaced values over  9, 1( )j j Mx ≤ ≤ M [ [0,2π
and                         is determined by FORM and SORM-cf ( )9 9,| jE X x=
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Results (5/4) 

Importance 
factors 

with 100M =
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Surrogate models 
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Learning framework 

 Input data 

= 

Input parameter space:                            space of data ( or patterns )           

Output parameter space:                         space of responses ( or labels )          ∈y 

Scope of the presentation:  Scalar output y
 Discrete set     , e.g. 
 Classification ( or pattern recognition ) 

{ }1;1−=

n∈ ⊆x  



 Continuous set     : 
 Regression 



 Objective 

    data pairs:                                                         Training set ( ) ( )1 1, , , ,N Ny y= ∈ ×x x  N

Construct a model         which predicts the output    at any new    ( )f x ∈x 
( regression ) ( )ŷ f=x x

( )signŷ f= xx ( binary classification ) 
:f → 

ŷ
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Optimal model 

 Construction of an “optimal” model 

 How (im)perfect is this “optimal” model? 

We do not know if the selected type of model will allow us 
to obtain an approximation sufficiently close to the real data! 

The “optimal” model is chosen from a set of specified models 
For Kriging: assumption about trend, type of covariance function, … 
For SVMs: type of loss function, type of kernel, type of regularization 

f    chosen from a known set of candidate functions     ( hypothesis 
space for SVMs ) by minimization of an error criterion defined over 
the training set ( our only source of information )  



The model is expected to predict well not only over the training data 
but also ( and more importantly ) over unseen data.  
 Ability of the model to generalize 
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Surrogate of a numerical model 

( )
true

true

:f
fy =

→
x x

 

We consider                              as outputs of a true model: 

The training set now becomes: ( )( ) ( )( )true tr1 e1 u, , , ,N Nf f= x x x x

The true model is supposed costly to evaluate ( e.g. finite elements ). 
► We want to learn     from a training set     as small as possible. 
     ( small     ) 

f

    is called surrogate model ( machine in statistical learning, 
metamodel or response surface in engineering, … ), 
e.g. polynomial response surfaces, Kriging ( a.k.a. GP emulators ), 
PCE, support vector machines ( SVM ), ANN, …  

f

N

( )1, , N
Ny y ∈ 

( )( )
( ) ( )

f 0

dn

Gp

ϕ

= ≤

 = =  ∫ u

u

U

u u X



 1


( )

( )

truef

G
≡

x

uLSF 
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Support Vector Machines ( SVMs ) 
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SVM as a 2-regularized learning problem (1/2) 

where                          is a loss function ( convex w.r.t. second 
parameter but not necessarily differentiable ), 

: +× →   

and          is a regularization constant. 0C >

The first term enforces the fit of the SVM model                        to the 
training data for the problem of interest ( classification or regression )    

The second term enforces a small norm         in the RKHS which 
results in a sufficiently smooth solution ( regularization effect ) 

k
h 

( ) 2

, 1

1min , ( )
2 kk

N

i ih b i
y h bC h

∈ ∈
=

+ +∑ x  

( ) ( )f h b= +x x
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SVM as a 2-regularized learning problem (2/2) 

( ) 2

, 1

1min , ( )
2 kk

N

i ih b i
y h bC h

∈ ∈
=

+ +∑ x  

Solution    in the form  ( )
1

( , )
N

i i
i

h c k
=

= ∑x x xh

where                       is a vector of unknown expansion coefficients ( )1, , Nc c=c 

   
2 T

k k
h h ,h= = c Kc 

   ( )
1

( ) ( , )
N

i j j i i
j

h c k
=

= =∑x x x Kc

where                              is the Gram ( or kernel ) matrix ( ) , 1
( , )

N
i j i j

k
=

=K x x

and    is a positive definite kernel ( reproducing kernel of the RKHS )  k
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ε –insensitive loss function and Gaussian RBF kernel 

( ),y u

y u−

ζ

ε+ε−

  ε –insensitive loss function 

εNo penalization of deviations lower than   , 
linear penalization otherwise 

 Gaussian RBF Kernel 

( ) ( ),y u y u ε
+

= − − ( ) ( )max ,0x x
+

= where 

( )2( , ) expk γ′ ′= − −x x x x

Most usual form: 
2

2( , ) exp
2

k
σ

 ′−
′ = −  

 

x x
x x     : bandwidth parameter σ

where *γ +∈

 Stationary, isotropic ( or radial ) 
Remarks: 

 Good pick for smooth decision functions 

 Most widely used kernel with SVMs 
 One single parameter to tune 
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L1–ε –SVR, dual optimization problem and solution 

( )( ) ( ) ( )*

* * * *

, 1 1 1 1

1max
2

( )
N N N N

i i j j i i i i i
i j i

i j
i

k , yα α α α α α ε α α
= = = =

− − − + − − +∑∑ ∑ ∑
α α

x x

 Dual optimization problem 

for 
subject to 

1,...,i N=

( )*
1

*

0

0

0

N
i ii

i

i

C

C

α α

α

α

=
 − =
 ≤ ≤

 ≤ ≤

∑
for 1,...,i N=

 SVR model 

( ) ( )
*

* ( )i ii
i

kf b,α α
∈

 
= − + 

 
∑ x xx
 

(            represents the set of indices of  support vectors ) 
{ }: 0 ii Cα= < <

b

where                              and 

and    is conveniently obtained as a byproduct of any interior point 
optimization method. 

{ }* *: 0 ii Cα= < <
*

 
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Hyperparameter selection 



38 

Optimal selection of hyperparameters 

( )  ( )
m k

* *
m k gen m k

,
, arg min Err ,=

θ θ
θ θ θ θ

where                      is a “sufficiently” accurate approximation of 
the generalization error for given values of parameters     and     . 

 ( )gen m kErr ,θ θ
mθ kθ

 Two key issues 

 What can we take for                     ?  ( )gen m kErr ,θ θ

Note: The exact error ( called true risk in SVMs ) is not accessible!  

 How to efficiently solve the optimization problem? 

 Objective 

 Hyperparameters 

Hyperparameters = Kernel parameter(s) + Other model parameters  
( )k γ=θ ( )m ,C ε=θ
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Approximation of the generalization error 

 Objective 

 Two key issues 

 What can we take for                     ?  ( )genErr ,m kθ θ
 How to efficiently solve the optimization problem? 

 Approximations used for  ( )genErr ,m kθ θ

( )  ( )
m k

gen
*

m m k
*

k
,

, arg min Err ,=
θ θ

θ θ θθ

 Span approximation of LOO error for ε -SVR (Chang & Lin 2005)  

 ( ) ( ) ( )
1

2* *
Lge m On k O,

1 1ErrErr , i i i i i
i iN N

Sε α α ξ ξ
∈ ∈

= ≈ + + + +∑ ∑θ θ


  

( )
1

( ) ( )
1LOO,

1 1

1 1Err , ( ) ( )
N N

i i
i i i i

i i
y f y f

N N
− −

= =

= = −∑ ∑x x




where                         ( 1 loss function ) ( )1 ,y u y u= −



40 

Span approximation for L1–ε –SVR LOO error 

( )
1

( ) ( )
1LOO,

1 1

1 1Err , ( ) ( )
N N

i i
i i i i

i i
y f y f

N N
− −

= =

= = −∑ ∑x x




where                         ( 1 loss function ) ( )1 ,y u y u= −

 LOO error used for ε -SVR (Chang & Lin 2005)  

 Span approximation ( L1-ε -SVR ) 

 ( ) ( )
1

* *
LOO,

21 1Err ii i i i
i iN

S
N

ε α α ξ ξ
∈ ∈

= + + + +∑ ∑


  

{ }*: 0 i ii Cα α= < + <

where 
( )

2
1

1

i

i

i

S −=
K 



1

T
1 0

×

×

 
=  

  

K 1
K

1
 





 




and ( ) ,
( , )i j i j

k
∈

=K x x
 
 

 Span of SV  

where                                           for L1-ε -SVR  

ix

Assumption: 
( )i− =  
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Finding optimal values for hyperparameters 

 Objective 

 Two key issues 

 How to efficiently solve the optimization problem? 

 Techniques used for solving the optimization problem 

 Deterministic search strategies ( grid search most often ) 

( )  ( )
m k

* *
m k gen m

,
karg min, Err ,=

θ θ
θ θ θ θ

 What can we take for                     ?  ( )gen m kErr ,θ θ

 Stochastic optimization methods  
 Simulated annealing (Pai & Hong 2006, Lin et al. 2008), 
 Genetic algorithms (Pai 2006, Chen 2007), 
 Particle swarm optimization (Lin et al. 2008, Fei et al. 2009), 
 Particle filter (Wei et al. 2013), 
 Cross-entropy method. 
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Reliability assessment 
based on Support Vector Machines 
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Adaptive surrogate models for reliability assessment 

( ) ( )final

final f ASVR1 21 , ,s
s ss pp p p p

=
= =

 Problem setup 

 Probability estimates: 

( ) ( )max

maxa, a, 1 a, 2 a, 1
, ,

s
s ss

N N N N
=

= 

 Training points with calls to the LSF: 

 Prior SVM-based adaptive strategies for RA  

 SVMs are far less common than Kriging for function approximation  
 Earliest references about reliability assessment based on SVMs 

(Rocco & Moreno 2002, Hurtado & Alvarez 2003) 
 Classification more used than regression 

 Very few details about hyperparameter selection ( which is the 
key point! )  

 Gaussian RBF kernel widely used, polynomial kernel in some 
works, e.g. (Basudhar & Missoum 2008) 

( ) ( )m

max

ax
1 21 , ,s s s

sf f ff
=

=  Sequence of surrogate models: 

max

a, 1t
s

si
NN

=
= ∑ Cumulative number of points: 



44 

Adaptive Support Vector Regression ( ASVR ) 

 Sampling and training in the standard space 

 QP solved by an interior point method 
► High accuracy on     and  

( )G u

 Learning intermediate LSFs with high accuracy is a waste of time 
► Fast exploration with MCMC training samples which 
progressively reach and populate the failure domain  

 Only the sign of          is used in SVC, the exact value is not 
accounted for ( loss of information ) 
► Use of L1-ε -SVR ( regression ) in ASVR method 

iα *
iα

 True k-fold cross validation avoided 
► Use of the span approximation of the LOO error 

 Inaccuracy of grid search for hyperparameter selection 
► Stochastic search with the cross entropy-method 

 Failure probability estimate: 


( )f ASVR n
p ϕ  =  u

U


 1

  ( ){ }max: 0n
sG= ∈ ≤u u u where 
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Application examples 
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Example 1 (from Der Kiureghian & de Stefano 1990) 

 Random variables 
( 8 ) 

 Previous results (Bourinet et al. 2011) 

 Limit-state function 
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Example 1 (from Der Kiureghian & de Stefano 1990) 

 Main characteristics of the reliability assessment problem 

 Rare event:  7
f ref 3.78 10p −= ×

 Single MPFP ( but very hard to find with FORM! ) 

 Highly curved limit-state surface 

 Variable sensitivities at MPFP are different from those at mean   
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Failure probability estimates 

Exploration Exploitation 

( )min a, ,
150,100,

10

N N p

 =  
 
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Shape of the limit-state surface 
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Example 2 (Rackwitz 2001) 

 Limit-state function 

 Random variables 
( n = 100 , 250 ) 

 Previous results (Bourinet et al. 2011) 
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Example 2 (Rackwitz 2001) 

 Main characteristics of the reliability assessment problem 

                           (             )  ,                           (             ) 3
f ref 1.73 10p −= ×

 Single MPFP 

 High dimension (             and             ) 

 Smooth limit-state surface 

 All variables of equal importance 

100n = 250n =

100n = 3
f ref 1.59 10p −= × 250n =
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Failure probability estimates 

( )min a, ,
150,100,

10

N N p

 =  
  100n =

250n =

( )min a, ,
1100, 250,

10

N N p

 =  
 
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Failure probability estimates 
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Future works in relation with the ASVR method 

 Ongoing work 

 In the long run 

 Multiple MPFPs 
 Moderately high dimensional problems ( up to about 100-250 r.v.s ) 

with random fields / random processes 

 Bias correction with sampling 
 Improve some computational aspects ( distributed training tasks, 

efficiency of QP solvers )     
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Thank you for your attention 

Jean-Marc Bourinet 

IFMA & Institut Pascal ( CNRS UMR 6602 ) 
Clermont-Ferrand, France 

Email : bourinet@ifma.fr 
http://www.ifma.fr/FERUM 

Further details in: 
Bourinet J.-M. Probability of rare events based on adaptive support vector machine regression. 
Reliability Engineering & System Safety (submitted). 
Kouassi A., Bourinet J.-M., Lalléchère S., Bonnet P., Fogli M. Reliability and sensitivity analysis 
of transmission lines in a probabilistic EMC context. IEEE Transactions on Electromagnetic 
Compatibility (submitted). 
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